Metabolism of the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl by the marine fish scup (Stenotomus chrysops) in vivo and in vitro.
نویسندگان
چکیده
The metabolism of the polychlorinated biphenyl congener 3,3',4,4'-tetrachlorobiphenyl (TCB) was examined in vitro and in vivo in the marine fish scup (Stenotomus chrysops). Untreated scup liver microsomes catalyzed metabolism of TCB with an estimated KM of 0.7 microM, at a rate < or = 0.13 pmol/min/mg. Metabolism was NADPH-dependent and inhibited by cytochrome c and CO, indicating cytochrome P450 (CYP) involvement. alpha-Naphthoflavone strongly inhibited microsomal TCB metabolism, and treatment of fish with CYP1A inducers increased the rates by approximately 2-fold, suggesting involvement of CYP1A. Scup were injected intraperitoneally with 0.1 or 5 mg TCB/kg and sampled on days 1-16 after treatment (after 3 days without food at each sampling). Concentrations of unmetabolized TCB in liver peaked on day 5 in low dose fish and on day 12 in high dose fish. In both groups the TCB content in the liver had declined 60% or more by day 16, suggesting depuration or redistribution from the liver. GC and MS revealed TCB and TCB metabolites in bile within 24 hr of treatment. The concentrations of TCB and metabolites in bile peaked at the same time that TCB concentrations peaked in the liver. The major metabolites were 5-hydroxy-3,3'4,4'-TCB (5-OH-TCB) and 4-hydroxy-3,3',5,4'-TCB (4-OH-TCB); 2-hydroxy-3,3',4,4'-TCB and 6-hydroxy-3,3',4,4'-TCB were minor metabolites. Animals given the high dose had much less 5-OH-TCB and much more parent TCB in bile than did fish given the low dose. Amounts of 4-OH-TCB in bile did not differ between doses. The reduced excretion of 5-OH-TCB coincided with a suppression of CYP1A in fish given the high dose, that did not occur in low dose fish, consistent with an involvement of CYP1A in TCB metabolism and particularly in formation of 5-OH-TCB. This study provides the first direct demonstration of 3,3',4,4'-TCB metabolism by fish. Data also indicate that these fish are able to eliminate TCB both as parent compound and as metabolites, despite a very slow rate of metabolism in vitro.
منابع مشابه
Oxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3,3',4,4'-tetrachlorobiphenyl: production of reactive oxygen by vertebrate CYP1As.
Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of sc...
متن کاملEffect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops
Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, population...
متن کاملCytochrome P-450 isozymes and monooxygenase activity in aquatic animals.
The roles of different forms of cytochrome P-450 in activation and deactivation of toxic chemicals, synthesis and breakdown of steroid hormones, and other functions, indicate the significance of these enzymes. Monooxygenase systems have been studied in species from several phyla of aquatic organisms. However, cytochrome P-450, the dominant catalyst in xenobiotic monooxygenase activity, is best ...
متن کاملOxidative Inactivation of Cytochrome P-450 1A (CYP1A) Stimulated by 3,39,4,49-Tetrachlorobiphenyl: Production of Reactive Oxygen by Vertebrate CYP1As
Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,39,4,49-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from scup and rat and expressed human CYP1As. In vitro inactivation of sc...
متن کاملIdentification of cytochrome P-450 1A (CYP1A) genes from two teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops), and phylogenetic analysis of CYP1A genes.
Cytochrome P-450-mediated responses to environmental challenges are well known in diverse animal taxa, but the evolution of the complex gene superfamily coding for these enzymes is poorly understood. Here we report a phylogenetic analysis of the cytochrome P-450 1A (CYP1A) genes including two new sequences determined from teleost fish, toadfish (Opsanus tau) and scup (Stenotomus chrysops). Dege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 25 5 شماره
صفحات -
تاریخ انتشار 1997